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Abstract. An iterative method which may under certain circumstances be an alternative to 
the Lanczos method has been investigated. The main properties of this scheme are 
discussed and a small numerical example is presented. 

1. Introduction 

In the last few years a number of grojps (Sebe and Nachamkin 1969, Cole et a1 1973, 
1974a-c, 1975a4 ,  Toepfer 1975) have made extensive use of the Lanczos algorithm 
(Lanczos 1950) to perform diagonalisations of quantum mechanical operators. The 
algorithm itself provides a method of generating a matrix representation of a symmetric 
(or Hermitian) operator in which the operator has a tri-diagonal form and is therefore 
easier to diagonalise. However, as has been shown (Whitehead 1972) the extreme 
usefulness of the algorithm rests on the fact that one need not generate the full 
tri-diagonal matrix if one is only interested in some of the eigenvectors corresponding to 
either the lower (or higher) eigenvalues. In this case the algorithm defines an iterative 
scheme which exhibits rapid convergence at the extreme ends of the eigenvalue 
spectrum. 

On the other hand certain numerical problems are inherent in the method because 
of the necessity of successively generating basis vectors of the desired representation 
which are orthogonal. Hence because of the numerical errors in generating the basis 
vectors it may be necessary in the nth step to re-orthogonalise the nth basis vector to the 
foregoing n - 1 basis vectors. Needless to say this requires additional computer time 
and more storage space. 

In the present work we have investigated another algorithm which under certain 
conditions may be considered as an useful alternative to the iterative Lanczos scheme as 
discussed by Whitehead (1972). In essence the algorithm may be stated as follows. 
Starting with an arbitrary start vector the first two iterations of the Lanczos algorithm 
are performed and the subsequent 2 X 2 matrix is diagonalised. The vector correspond- 
ing to the lowest eigenvalue of the 2 X 2 matrix is taken then as the new start vector and 
is used to generate a subsequent 2 X 2 matrix which is again diagonalised allowing as 
before the selection of a new start vector. We shall prove that iterations performed in 
this manner are convergent and converge ultimately to the eigenvector corresponding 
to the lowest eigenvalue which has a non-zero component in the original start vector. 
Hence assuming that the original start vector contains a non-zero component of the 
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eigenvector corresponding to the lowest eigenvalue this algorithm provides a means of 
obtaining exactly the ground state eigenvector of the operator considered. 

In some respects this algorithm reduces part of the aforementioned numerical and 
computational problems prevalent in the original Lanczos algorithm. Since we are in 
essence iterating a 2 X 2 matrix only two vectors are required in any given iteration step, 
i.e. less storage space in a computer is required. Furthermore, in each iteration step we 
have only to construct one vector which is orthogonal to the start vector in that iteration 
and as is the case in the original Lanczos algorithm need not worry about its orthogonal- 
ity with respect to all the previous vectors which have been generated. On the other 
hand the present algorithm although convergent, converges at a slower rate as com- 
pared to the original Lanczos algorithm and as previously stated yields only one 
eigenvector. 

In the remaining sections of the present paper we describe the method in more detail 
and present a proof of its convergence. Furthermore, we show that this algorithm is 
closely related to a special form of the power method. A small numerical calculation 
has been performed to illustrate the method. 

2. Description of the method 

This section is divided into three parts. In § 2.1 we give a description of the iterative 
algorithm; in § 2.2 we present a proof of the convergence properties of the algorithm; 
and in Q 2.3 we show its relation to other methods. 

2.1. The algorithm 

Let A be a linear Hermitian operator defined everywhere in a finite dimensional vector 
space U ? .  A is then a continuous and bounded operator. It could for example be the 
projection of some physical operator onto a subspace of the complete Hilbert space. 
Let Ik) be an arbitrary normalised vector in the space U. Acting on it withA we obtain 

AIk)=ekIk)+Uklk i ) .  (2.1) 

If we demand that 

(k lk , )  = 0 and ( k , ( k , )  = 1 

the quantities ek and uk are given by 

In equation (2.3) we shall choose the positive sign. The two states Ik) and (k , )  now 
define a two-dimensional subspace and we can diagonalise A in this subspace which is 
equivalent to the diagonalisation of PkAPk where Pk is the projector on this two- 
dimensional subspace. The 2 X 2 matrix to be diagonalised has the form 

(2.4) 

t A need not necessarily be given in its matrix representation. 
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and we note that this is a real matrix. 
The resulting two eigenvalues have the interesting property, that one always lies 

above ek and the other always below ek as long as vk # 0. This is a consequence of the 
eigenvalue separation theorem (Householder 1964, Wilkinson 1965) but can easily be 
seen by looking at the explicit form for the eigenvalues. Upon diagonalisation of the 
2 x 2 matrix given in equation (2.4) the normalised eigenvector ( k  + 1) corresponding to 
the lower eigenvalue ek+l  is then used as new start vector in equation (2.1) and the 
process is repeated. This now defines the iterative scheme we want to consider. 

The successive eigenvalues form a monotonically decreasing sequence, i.e. 

ek+l< ek. 

Since this is a sequence of expectation values of a bounded Hermitian operator, it is 
bounded by the lowest eigenvalue of this operator and therefore must be convergent. 

2.2. Convergence properties 

From the fact that the ek form a convergent sequence it follows, as is shown in appendix 
1, that vk converges to zero. But vk is just the square root of the variance of A 
computed with vectors Ik) .  If we suppose that the sequence Ik) converges to 14) E o we 
then know, because A is continuous that the variance of 14) will vanish, and so 14) will 
be an eigenvector. 

We shall now show that this limiting vector actually exists. Expanding ( k )  in terms of 
the eigenvectors of A we obtain 

where AlA) =EA ( A )  and, assuming non-degeneracy for the moment 

EA <EA+1. (2.7) 
The normalisation condition and variance may now be given by 

clb;\k(2(EA -ek)’ = vk - k + m  0. (2 * 9) 

Equation (2.9) implies, that for each A either Ib;\k( 7 0 or (EA -ek) 7 0. Since we 
assume non-degeneracy and because of equation (2.8) one and only one j~ must exist, 
such that 

-U2 -cc 

and 

Let us now assume that /Ao)  is the non-zero component in the initial start vector 
Ik = 0) with the lowest eigenvalue, i.e. 

(2.10) 
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As is demonstrated in appendix 2 it follows from the explicit construction of the iterated 
vectors that bi$i has the same phase as 6;' and that we have 

which proves that 6:' converges to 1 times the phase factor of 6;' or 

14) being proportional to /Ao). This completes the proof in the non-degenerate case. 
Suppose now in the start vector there are components belonging to an n-fold 

degenerate eigenvalue EA. We collect the vectors which belong to the same degenerate 
subspace U,,, i.e. for each A we form 

with the cA, given in the initial start vector. Now we can rewrite this as a constant 6; 
times a normalised vector: 

lh) = 6;lA ), @ ( A ) =  1. 

If we do this for all degenerate vectors occurring in the start vector (equation (2.10)) 
equation (2.6) and the additional condition (2.7) are still valid so that the remainder of 
the proof is unchanged. 

2.3. Relation to other methods 

From the previous section it should be obvious that the present algorithm is closely 
related to the full Lanczos algorithm. In both cases the iterated vectors are essentially 
special linear combinations of the start vector and vectors of the form Anlo), which are 
used in the power method and its variants (Faddejew and Faddejewa 1964). In our case 
the improvement over the power method may be understood from the following. 

It is well known that the convergence of the usual power method can in principle be 
improved by allowing for a spectral shift of the matrix A during the iterations such that 
the iterated vector has the form 

However in principle not much can be said about the choice of A, unless at least some of 
the eigenvalues of the matrix are known.' On the other hand if one is only interested in 
either the lowest (or highest) eigenvalues one may attempt to determine them in such a 
way, that convergence in each iteration step is optimal. This can be done by finding the 
extrema of the following functional: 

But this expression is just the expectation value of the vector 
Tv 

Jk i- 1) = (A - A k + i ) l R )  
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which can be. written of course as 
rv 
(k +I)=C(L)+(A -ek)(&) (2.11) 

where ek is (&(A Ic)/(c(c) and c is s e b l y  chosen. However since the extrema of the 
expectation values of the vector (k  + 1) as defined in equation (2.1 1) are the two 
eigenvalues of A in the two-dimensional subspace defined by I f f )  and ( A  - e k ) ( c )  the 
optimal hk+l  has to yield exactly one of these eigenvalues. In other words, the 
requirement of optimisation of the spectral shift in each iteration is satisfied in the 
present method. 

The improvement of this method over the usual power method should now be clear. 
In cases where one looks for the dominant eigenvalue (i.e. the eigenvalue with the 
largest modulus) one can improve convergence; in cases where one looks for the lowest 
or highest eigenvalue one can enforce convergence to the eigenvalue required irrespec- 
tive of whether it  is dominant or not. 

3. Numerical results and discussion 

In order to demonstrate the convergence of the present method as compared with other 
methods we have performed the following numerical calculations. A 100 X 100 sym- 
metric random matrix was generated. By subtracting the largest eigenvalue from the 
diagonal matrix elements the spectrum was made negative definite. This was done to 
simplify calculations performed using the power method which we wanted to include for 
comparison and which does not essentially influence the results obtained from the other 
methods. 

The present method, the Lanczos algorithm and the power method were used in 
order to obtain the lowest eigenvalue and eigenvector of the matrix (see figure 1). In 
order to obtain some feeling for the convergence rates of the respective methods we 
varied the amplitude of the lowest eigenvector in the original start vector. As can be 
seen from figure 1 the present method as expected converged at a slower rate than the 
Lanczos algorithm but appreciably faster than the power method. Hence bearing in 
mind that each iteration step in this method is somewhat simpler than that in the 
Lanczos algorithm (particularly if one must re-orthogonalise) the slower convergence 
rate in our opinion does not rule out the method as an alternative to the Lanczos 
algorithm. 

On the other hand all three of the methods exhibit under certain conditions a 
disturbing tendency to converge to the wrong eigenvalue (see figure l(c)). This 
problem arises when the original start vector contains large components (relative to that 
of the lowest lying eigenvector) of one or more low lying eigenvectors of the matrix. 
Unfortunately the only remedy at present for this problem is to perform additional 
iterations. 

However in spite of this both methods provide a basis for realistic applications in the 
field of nuclear physics. One of the main advantages, in our opinion, being that 
quantum mechanical operators to be diagonalised need not be given in a matrix 
representation which is a feature of all direct iteration methods and may therefore 
reduce storage requirements and computing time (Whitehead 1972). 

Finally we wish to point out that the present method may in principle be used to 
obtain other eigenvalues and eigenvectors in a simple, well known (Faddejew and 
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Figure 1. The convergence rate of the lowest-lying eigenvector in a random lOOx 100 
symmetric matrix for: A, Lannos method; B, the present method; and C, the power 
method. On the right-hand side of the figure the four lowest lying eigenvalues of the matrix 
are given. The amplitude of the lowest lying eigenvector in the original start vector is: ( a )  
0.1%, ( b )  IO%, and ( c )  0.015%. 
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Faddejewa 1964) way. Once the eigenvector of the lowest lying eigenvalue has been 
obtained it may be projected out of the original start vector yielding a vector which 
contains no component of the lowest lying eigenvector. This vector may then be used as 
a new start vector and the algorithm will yield ultimately the eigenvector corresponding 
to the next lowest lying eigenvalue whose amplitude in the start vector is non-zero. 

Appendix 1 

Proof that uk (equation (2 .3 ) )  converges to zero. The explicit form of ek+l after 
diagonalisation of the matrix (2.4) is: 

ek+l = i (ak  +ek)-i[((Yk -ek)2+vE]1/2.  

From this follows (assuming of course vk # 0) 
2 1 / 2  -1 lek+1 -ek I = Ixk - ( x :  + ui)1'2/  = lv:I/xk + ( x i  f uk) I 

with x = $ ( a k + l -  ek ). Since u k  and x k  are bounded it follows from the convergence of ek 
that V k  + 0. 

k +w 

Appendix 2 

Proof of the convergence of b:". From the inequalities 

one obtains 
ek+l <e& and ek+l aEAo 

lek + I  -ek I < (EAo-ek 1 
and therefore, constructing lk + 1) explicitly from lk )  
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